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To Support Decision Making, 
What Do We Require of Predictions?

To be useful, model-based predictions must: 
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To Support Decision Making, 
What Do We Require of Predictions?

To be useful, model-based predictions must: 

1. Address a relevant question 
• Example 1: How should an agency distribute a limited supply of 

oxygen to minimize the number of hospital patients with unmet need? 
• Predictions of weekly cases are not directly relevant…  
• Predictions of weekly severe hospitalizations are more relevant 

• Example 2: Should a hospital expand its patient capacity? 
• Predictions of weekly hospitalizations are a little relevant… 
• Predictions of peak hospitalizations in the next few months are 

more relevant 

2. Have a record of accuracy in past predictions



Outline of This Talk

• Some common modeling tasks

• Some common models and methods for these tasks 

• Evaluating predictions
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• Nowcast: what is the state of the system now (or in the past)? 
• Forecast: what will the state of the system be in the future? 
• Scenario Projection: what would the state of the system be in the 

future if certain specified conditions came about?

Common Modeling Tasks

Image credit: adapted from Nicole Samay, Alex Vespignani,  
via the Scenario Modeling Hub, https://covid19scenariomodelinghub.org/ 
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• Targets used in CDC annual influenza forecasting challenges 
• 4 short term weekly incidence targets (2 in recent past, 2 near future) 
• Timing of season onset 
• Timing of season peak 
• Peak incidence

Examples of Nowcast & Forecast Targets 
with Public Health Relevance
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• Is a categorical assessment of season severity (e.g. as low, moderate, 
high, or very high) more relevant than numeric values of peak intensity? 

• Maybe we care more about the largest incidence we’ll observe over the 
next 4 weeks than the incidence in each of those weeks? 

• Do we want to know whether there will be a change in growth rate or 
direction of trend over the next 4 weeks?

[How] Could These Targets have 
Greater Public Health Relevance?
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Examples of Scenario Projection Targets 
with Public Health Relevance
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• What would incident cases be over the next 6 months if there were 
low/high vaccination rates and a low/high variant transmissibility 
increase?

Image credit: The Scenario Modeling Hub, https://covid19scenariomodelinghub.org/ 



[How] Could These Targets have 
Greater Public Health Relevance?
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• Do we care more about projected cases under each scenario, or the 
expected difference or ratio of case levels between scenarios?

Image credit: The Scenario Modeling Hub, https://covid19scenariomodelinghub.org/ 



Outline of This Talk

• Some common modeling tasks 

• Some common models and methods for these 
tasks

• Evaluating predictions
17
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General Classes of Models
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Mechanistic: Model mechanisms of disease transmission 

• Individuals move between compartments at rates that depend on: 
• Current number of susceptible and infected individuals 
• Potentially, other factors (e.g., weather) 

Phenomenological: Model the association between 
• Predictive variables (past disease incidence, weather, Google search 

data, …) 
• Future disease incidence

Susceptible Infected Recovered
β ƛ



When Should We Use Mechanistic 
or Phenomenological Models?
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• For a generic forecasting task, neither is a priori better than the other 
• In the COVID-19 Forecast Hub, for a long time the best model was: 

• for cases, a phenomenological machine learning model 
• for deaths, a mechanistic compartmental model 
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When Should We Use Mechanistic 
or Phenomenological Models?
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• For a generic forecasting task, neither is a priori better than the other 
• In the COVID-19 Forecast Hub, for a long time the best model was: 

• for cases, a phenomenological machine learning model 
• for deaths, a mechanistic compartmental model 

• For a scenario projection, mechanistic models have an advantage: 
• Can encode expert knowledge about the disease system that a 

phenomenological model may not be able to learn due to lack of 
relevant data.
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Models May Combine Mechanistic 
and Phenomenological Ideas

21

There are a few ways this has been done: 

1. By temporal scale: Nowcasts or short term forecasts use 
phenomenological model, long term forecasts use mechanistic model 

• Examples: 
• Columbia University (Shaman Group) model for influenza 

forecasting 
• IHME for COVID-19 

2. Mechanistic core, phenomenological model to capture biases of the 
core 

• Examples: 
• Los Alamos National Laboratory (Dave Osthus) model for influenza 
• DeepGLEAM model for COVID-19



Ensembles Combine Models

22

Example: 
• Ensemble prediction is average of predictions from component models 

Theory (simplified): 
• Ensembles are at least as good as the component models 

Practice: 
• Performance depends on implementation details 
• Ensembles are consistently at or near the top of the rankings



Results from Influenza
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– Biggerstaff et al. BMC Infectious Diseases 2016.  

“Public health actions informed by forecasts that 
later prove to be inaccurate can have negative 
consequences, including the loss of credibility, 
wasted and misdirected resources, and, in the 

worst case, increases in morbidity or mortality. ” 

26

"A bad prediction can be worse than no prediction at all"
– Dr. Carrie Reed, CDC Influenza Division 

Using Bad Predictions Can 
Have Bad Consequences



Only use predictions from models with a track 
record of reliable performance.

27

A First Step Toward Avoiding 
Use of Bad Predictions



Only use predictions from models with a track 
record of reliable performance.
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(at minimum, use caution if limited track record)

A First Step Toward Avoiding 
Use of Bad Predictions
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• Ideally, we would evaluate the quality of forecasts in the specific 
context of the decision making process we have in mind.
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context of the decision making process we have in mind. 
• Example: we are planning distribute a limited supply of oxygen 

across hospitals to minimize the number of patients with unmet need 
• Can we quantify the loss incurred if we use an incorrect forecast? 

• e.g., count of patients with unmet need 
• If so, prefer forecasts that minimize this loss 
• This is difficult: hard to characterize loss, different for every problem.
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• Ideally, we would evaluate the quality of forecasts in the specific 
context of the decision making process we have in mind. 
• Example: we are planning distribute a limited supply of oxygen 

across hospitals to minimize the number of patients with unmet need 
• Can we quantify the loss incurred if we use an incorrect forecast? 

• e.g., count of patients with unmet need 
• If so, prefer forecasts that minimize this loss 
• This is difficult: hard to characterize loss, different for every problem. 

• Backup plan: More generic comparisons of forecasts to observed data
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Overall Scores Can Obscure Details
• Forecasts of weekly COVID cases from COVIDhub-ensemble and 

Karlen-pypm in Missouri during the Delta wave: 

• Karlen is better at identifying the rise of the Delta wave, misses 
badly near the peak. 

• Karlen’s overall WIS is worse, but there is a more nuanced story: 
• If you want to identify the start of a new wave, look to Karlen 
• The rest of the time, look at the ensemble

COVIDhub−ensemble Karlen−pypm
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Evaluating Nowcasts and Forecasts
• Look at lots of plots!

Image credit: 
https://forecasters.org/blog/2021/09/28/on-the-predictability-of-covid-19/
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Evaluating Nowcasts and Forecasts
• Look at lots of plots! 
• Use proper scores (log score, CRPS, WIS, …) to compare models 

• Theory says you can’t “cheat” proper scores 
• Often not that interpretable 
• Helpful to use a simple baseline model as a reference

(a) Forecasts of incident deaths in Ohio from February 15, 2021
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Evaluating Nowcasts and Forecasts
• Look at lots of plots! 
• Use proper scores (log score, CRPS, WIS, …) to compare models 

• Theory says you can’t “cheat” proper scores 
• Often not that interpretable 
• Helpful to use a simple baseline model as a reference 

• Examine calibration 
• Across many forecasts, a 95% prediction interval should contain 

the eventually observed outcome about 95% of the time

Image credit: 
https://forecasters.org/blog/2021/09/28/on-the-predictability-of-covid-19/
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Evaluating Scenario Projections
• Evaluating scenario projections is difficult: 

• Care must be taken to specify the objective of the projections: 
• Is the goal conditional or counterfactual statements about what 

would happen in each scenario? 
• Is the goal to estimate causal effects of policy differences? 
• How should we handle potential confounding variables? 

• Care must be taken to specify how to evaluate the projections: 
• We can’t directly compare to observed data 
• Causal parameters may not be identifiable from observed data 

• But careful evaluations are still critical! 

• A more rigorous conversation about evaluating projections should 
involve experts from the causal inference community
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Conclusions/Summary
• Predictive model outputs (nowcasts, forecasts, and scenario 

projections) may be helpful for a wide variety of public health 
decisions, if: 
• The predictions are relevant to the decision at hand 
• The predictions have a track record of good performance 

• What methods to use? 
• Good forecasts can come from either mechanistic or 

phenomenological approaches 
• Across many applications, ensembles have shown good results 
• Preferences should be based on data about performance 

• More work needs to be done to put evaluation of scenario projections 
on a solid footing. 

• See similar discussion of forecasting in “Applying infectious disease 
forecasting to public health: a path forward using influenza forecasting 
examples” by Lutz et al. (2019) BMC Public Health



Thanks! 
I’d like to acknowledge helpful conversations and insights from 
Nick Reich, Ryan Tibshirani, Roni Rosenfeld, Aaron Gerding, 

Meagan Burns, Rosa Ergas, Matthew Biggerstaff, 
and Mike Johansson
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