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Why take into account uncertainty?

» Forecast quality cannot be fully described considering only the
central tendency:
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» Good forecasts “maximize sharpness subject to calibration”

» Proper scoring rules (Gneiting and Raftery 2007) allow us to
compare probabilistic forecasts
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The interval score

Consider a central (1 — a) x 100% prediction interval [/, u] and
observation y. The interval score is given by

Sa(Fy) ==+ (- <)) + (-l >u),

spread . s
P penalty for underprediction penalty for overprediction

10%.

I T I. T I
0 50 100 150 200

y



The weighted interval score

Bracher, Ray, Gneiting, Reich (2020), https://arxiv.org/abs/2005.12881
To assess prediction intervals at levels (1 — ag,...,1 — ak)
simultaneously we can use the weighted interval score:

WISay (F,y) = K+1 X Z IS0, (F, ).

which approximates the CRPS and generalizes the AE.
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Systematic comparison of different forecasters

> Mean weighted interval scores for aggregation across
space, time, target
> preserve propriety (i.e. don't create an incentive to cheat)
> scores from larger states and weeks with high incidence are
influential

> Restriction to models fulfilling (E. Cramer / N. Reich):
P covering at least half of all states
P covering at least 12 out of 15 wks between 2020-05-18 and
2020-08-24
» forecast targets with major revisions of truth data removed

» Difficulty: Different forecasters cover different subsets of
weeks and locations.
» could be dealt with mixed effects regression, but challenging
P> my suggestion: use pairwise comparisons
» main assumption: “non-informative missingness”



Availability of forecasts from different models

After removal of weeks/targets with major revisions of truth data

Number of covered locations by date and model
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Ratios of mean WIS

If all forecasts were available from all forecasters the following
would work:

mean WIS model i < 1if i better than j
0 = - = . .
mean WIS model j > 1 if i worse than j
P mean WIS model i {< 1 if / better than avg
(1—[:\77/121 mean WIS model m> > 1 if i worse than avg
9.
= 9,J = I'

I

0; is a scale-free measure of relative performance (relative WIS
skill wrt models 1,..., M). Ratios of average scores are easier to
interpret that differences.

Problem: The 6; can only be evaluated if all forecasters cover all
prediction tasks.



Comparisons under partial missingness

If all forecasts were available from all forecasters then
M 1/M
0; = (H 9,m> :
m=1

If some forecasts are missing we can still compute

~  mean WIS model i on Aj
mean WIS model j on A;;

i =

with Aj; as the overlap of available forecasts by i and j and

M 1/M
- (fia)
m=1

Now generally é,j #+ é,-/éj, but we hope that 5,-1- ~ 5;/0}



Observed WIS ratios 9~,-J-

Direct pairwise comparison: WIS ratios
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blue: row model better; red: column model better
Pairwise comparisons are almost transitive!
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Relative WIS skills 6

model

COVIDhub-ensemble
YYG-ParamSearch
UMass-MechBayes
LANL-GrowthRate

IHME-CurveFit
UCLA-SuEIR
GT-DeepCOVID
COVIDhub-baseline
MOBS-GLEAM_COVID
JHU_IDD-CovidSP
UT-Mobility
USACE-ERDC_SEIR

0.56
0.63
0.72
0.89
0.92
0.95
0.96
1.09
1.18
1.46
1.56
1.78




Checking agreement between 5,-1- and 0~,-/§j

Pairwise comparisons implied by relative WIS skills
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Checking agreement between 5,-1- and 0~,-/§j

Direct pairwise comparison: WIS ratios
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Stratified relative WIS skill

Relative WIS skill by forecast date
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Stratified relative WIS skill

Relative WIS skill by target end date
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Stratified relative WIS skill

Relative WIS skill by horizon
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Testing for difference in forecast performance

To test for a difference in mean WIS between models / and j:
> test statistic: §; (= ratio of mean WIS of i and j for A;)
» generation of reference distribution:
» blockwise permutation of pairs of scores between i and j
» to account for dependence between locations and horizons: all
forecasts made at one forecast date treated as one block
» p-value is given by the proportion of sampled WIS ratios
exceeding the observed ratio



Results of performance tests

Permutation tests (applied to mean WIS per forecast date)
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